

Pergamon

Tetrahedron Letters 41 (2000) 1215–1218

TETRAHEDRON
LETTERS

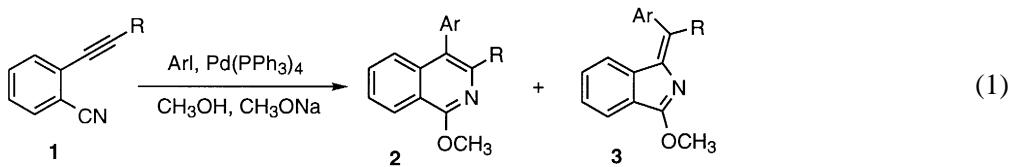
Palladium-catalyzed coupling of aryl iodides with 2-alkynylbenzonitriles

Li-Mei Wei,^{a,b} Chi-Fong Lin^a and Ming-Jung Wu^{a,*}

^aSchool of Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan

^bDepartment of Applied Chemistry, Fooyin Institute of Technology, Kaohsiung County, Taiwan

Received 15 September 1999; accepted 3 December 1999


Abstract

The reaction of 2-(2-phenylethynyl)benzonitrile (**1a**) with aryl iodides, in the presence of $Pd(PPh_3)_4$ and $NaOCH_3$ in CH_3OH , at refluxing temperature for 24 h, gave 3-diarylmethylenisoindoles **3a–d** in 18–56% yields. When 2-(1-hexynyl)benzonitrile (**1b**) was employed in this reaction, isoquinolines **2a–c** were obtained in 29–34% yields and isoindoles **3e–g** were obtained in 12–25% yields, respectively. Reaction of 2-ethynylbenzonitrile (**1c**) with 2.5 equiv. of iodobenzene for 48 h gave **3a** in 45% yield along with the monocoupled adduct **3h** in 6% yield. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: palladium; palladium compounds; cyclization; isoindoles; isoquinolines.

The chemistry of palladium has become a powerful tool for organic synthesis in recent years.¹ For example, the intramolecular cyclization of acetylenic molecules containing a heteronucleophile promoted by σ -vinyl and σ -aryl palladium complexes provides an efficient route to various heterocycles. For instance, the palladium-catalyzed cyclization of acetylenic alcohols has been shown to be an efficient route to exocyclic enol ethers.² In the same manner, *o*-ethynylphenols have been converted to 2-substituted-benzo[*b*]furans.³ This strategy has also been applied to molecules containing amino-,⁴ carboxyl-⁵ and carbo-nucleophiles.⁶ Our interest in the direct cyclization of 2-alkynylbenzonitriles to isoquinoline and isoindole derivatives⁷ encouraged us to examine the palladium-catalyzed cyclization of 2-alkynylbenzonitriles. We now report a new strategy for the synthesis of 3,4-disubstituted-isoquinolines **2** and diarylmethylenisoindoles **3** ($R=$ aryl) via the cross-coupling and cyclization of aryl iodides with 2-alkynylbenzonitriles **1** (Eq. (1)).

* Corresponding author.

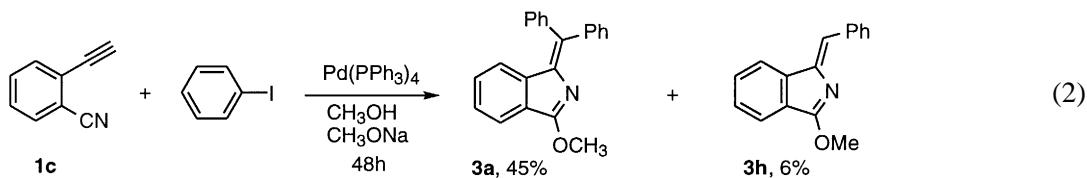
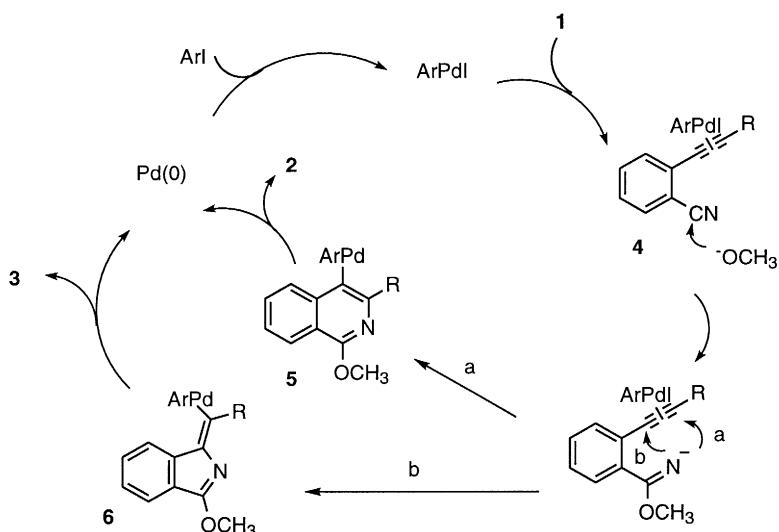

The presented reaction conditions are as follows: to a stirred solution of 2-alkynylbenzonitrile **1** (0.4 mmol) in dry methanol (10 mL) under nitrogen were added sequentially the aryl iodide (0.8 mmol), Pd(PPh₃)₄ (0.02 mmol) and sodium metal (5 atom-mmol). The resulting solution was heated under reflux and stirred at this temperature for 24 h or 48 h. After cooling to room temperature, the solvent was evaporated in vacuo. The residue was diluted with saturated aqueous NaCl solution and extracted with EtOAc (3×15 mL). The extracts were dried over anhydrous MgSO₄. After removal of solvent, the residue was purified by flash column chromatography to give the products. The results are summarized in Table 1.

Table 1
Palladium-catalyzed cyclization of 2-alkynylbenzonitriles


2-Alkynylbenzonitrile	Aryliodide	reaction time	products ^a (yield, %)
1a (R = Ph)	C ₆ H ₅ I	24h	3a (Ar = R = Ph) (46%)
1a	4-CH ₃ C ₆ H ₄ I	24h	3b (Ar = 4-CH ₃ C ₆ H ₄ ; R = Ph) (56%)
1a	4-CH ₃ OC ₆ H ₄ I	24h	3c (Ar = 4-CH ₃ OC ₆ H ₄ ; R = Ph) (40%)
1a	2-CH ₃ OC ₆ H ₄ I	24h	3d (Ar = 2-CH ₃ OC ₆ H ₄ ; R = Ph) (18%)
1b (R = <i>n</i> -Bu)	C ₆ H ₅ I	48h	2a (Ar = Ph; R = <i>n</i> -Bu) (32%)
			3e (Ar = Ph; R = <i>n</i> -Bu) (25%)
1b	4-CH ₃ C ₆ H ₄ I	48h	2b (Ar = 4-CH ₃ C ₆ H ₄ ; R = <i>n</i> -Bu) (34%)
			3f (Ar = 4-CH ₃ C ₆ H ₄ ; R = <i>n</i> -Bu) (19%)
1b	4-CH ₃ OC ₆ H ₄ I	48h	2c (Ar = 4-CH ₃ OC ₆ H ₄ ; R = <i>n</i> -Bu) (29%)
			3g (Ar = 4-CH ₃ OC ₆ H ₄ ; R = <i>n</i> -Bu) (12%)

^aYields refer to isolated yields. All of the compounds gave satisfactory ¹H NMR, ¹³C NMR and MS spectra data.⁸

The reaction of 2-(2-phenylethynyl)benzonitrile (**1a**) with iodobenzene under the described reaction conditions, gave isoindole **3a** in 46% yield after 24 h. The structure of **3a** was unambiguously determined by X-ray crystallographic analysis. Other aryl iodides have also been successfully employed in this cyclization reaction. 4-Methyliodobenzene and 4-methoxyiodobenzene afforded the isoindoles **3b** and **3c** in 56% and 40% yields, respectively. However, 2-methoxyiodobenzene gave **3d** in only 18% yield and unreacted **1a** in 36% yield. This is possibly due to a steric effect reducing the rate of the coupling reaction. Iodobenzenes bearing an electron withdrawing group, such as 4-chloroiodobenzene and 4-iodoacetophenone, gave no cross-coupling products, only the cyclization product **3h** in 15–20% yield. On the other hand, the reaction of 2-(1-hexynyl)benzonitrile (**1b**) with iodobenzene under the reaction conditions, gave isoquinoline **2a** and isoindole **3e** in 32% and 25% yields, respectively, after 48 h. Similar results were obtained by employing the other aryl iodides. 4-Methyliodobenzene afforded **2b** and **3f** in 34% and 19% yields and 4-methoxyiodobenzene gave **2c** and **3g** in 29% and 12% yields. From the reaction of 2-ethynylbenzonitrile (**1c**) with iodobenzene (2.5 equiv.) under the standard reaction conditions for 48 h, compound **3a** was isolated in 45% yield along with **3h** in 6% yield (Eq. (2)).

A mechanism of this cyclization reaction is proposed in Scheme 1. The formation of **2** and **3** can proceed through: (a) coordination of the carbon–carbon triple bond of **1** to σ -C_{sp}²–palladium complexes to produce the η^2 –palladium complexes **4**, (b) methoxide addition to the cyano group, followed by intramolecular nucleophilic attack of the iminium ion to the activated carbon–carbon triple bond via a 6-*endo* or 5-*exo* transition state, and (c) reductive elimination of Pd⁰ species from the resultant σ -arylpalladium complex **5** or σ -vinylpalladium complex **6**. When **1b** (R=n-Bu) was employed in this reaction, it favored the formation of the isoquinolines **2** via a 6-*endo* transition state overcoming the steric interaction between the two substituents at C3 and C4. However, when this reaction was carried out with **1a** (R=Ph), the steric interaction between the two aryl groups at C3 and C4 became more significant, and the isoindoles **3** were obtained predominantly instead.

Scheme 1.

In conclusion, the tandem palladium-catalyzed cyclization of 2-alkynylbenzonitriles provides a one-step synthesis of 3,4-disubstituted-isoquinolines and diarylmethylenisoindoles. These molecules may show interesting biological activities.⁹ Currently, optimization of the regioselectivity of this cyclization reaction and examination of biological activities of these molecules are under investigation.

Acknowledgements

We thank the National Science Council of the Republic of China for financial support of this program.

References

- (a) Tsuji, J. *Palladium Reagents and Catalyst: Innovations in Organic Synthesis*; John Wiley & Sons: New York, 1995. (b) Heck, R. F. *Palladium Reagents in Organic Synthesis*; Academic Press: New York, 1985.
- Luo, F.-T.; Schreuder, I.; Wang, R.-T. *J. Org. Chem.* **1992**, *57*, 2213.
- (a) Arcadi, A.; Cacchi, S.; Marinelli, F. *Synthesis* **1986**, *749*. (b) Arcadi, A.; Cacchi, S.; Del Rosario, M.; Fabrizi, G.; Marinelli, F. *J. Org. Chem.* **1996**, *61*, 9280.
- (a) Arcadi, A.; Cacchi, S.; Marinelli, F. *Tetrahedron Lett.* **1992**, *33*, 3915. (b) Luo, F.-T.; Wang, R.-T. *Tetrahedron Lett.* **1992**, *33*, 6835. (c) Saulnier, M. G.; Frennesson, D. B.; Deshpande, M. S.; Vyas, D. M. *Tetrahedron Lett.* **1995**, *36*, 7841. (d) Cacchi, S.; Fabrizi, G.; Pace, P. *J. Org. Chem.* **1998**, *63*, 1001.
- (a) Arcadi, A.; Burini, A.; Cacchi, S.; Delmastro, M.; Marinelli, F.; Pietroni, B. R. *J. Org. Chem.* **1992**, *57*, 976. (b) Bouyssi, D.; Gore, J.; Balme, G.; Louis, D.; Wallach, J. *Tetrahedron Lett.* **1993**, *34*, 3129. (c) Cavicchioli, M.; Bouyssi, D.; Gore, J. *Balme, G. Tetrahedron Lett.* **1996**, *37*, 1429.
- (a) Fournet, G.; Balme, G.; Van Hemebruck, B.; Gore, J. *Tetrahedron Lett.* **1990**, *31*, 5147. (b) Fournet, G.; Balme, G.; Gore, J. *Tetrahedron* **1991**, *47*, 6293. (c) Bouyssi, D.; Balme, G.; Gore, J. *Tetrahedron Lett.* **1991**, *32*, 6541. (d) Balme, G.; Bouyssi, D. *Tetrahedron* **1994**, *50*, 403. (e) Bruyere, D.; Gaignard, G.; Balme, G.; Lancelin, J. M. *Tetrahedron Lett.* **1997**, *38*, 827.
- Wu, M.-J.; Chang, L.-J.; Wei, L.-M.; Lin, C.-F. *Tetrahedron* **1999**, *55*, 13193.
- Selected data: **3a**: a white solid. Mp 116–117°C; ^1H NMR (400 MHz, CDCl_3) δ 7.73 (dd, 2H, $J=7.1, 1.2$ Hz), 7.53 (dt, 1H, $J=7.5, 1.0$ Hz), 7.46–7.49 (m, 2H), 7.23–7.39 (m, 7H), 7.06 (td, 1H, $J=7.0, 1.1$ Hz), 6.25 (dt, 1H, $J=7.9, 1.0$ Hz), 4.22 (s, 3H). Anal. calcd for $\text{C}_{22}\text{H}_{17}\text{NO}$: C, 84.85; H, 5.51; N, 4.50. Found: C, 84.78; H, 5.52; N, 4.45. Compound **3b**: a white solid. Mp 113–114°C; ^1H NMR (200 MHz, CDCl_3) δ 7.64 (d, 2H, $J=8.1$ Hz), 7.13–7.55 (m, 9H), 7.05 (td, 1H, $J=7.3, 1.0$ Hz), 6.23 (d, 1H, $J=7.0$ Hz), 4.22 (s, 3H), 2.37 (s, 3H). Anal. calcd for $\text{C}_{23}\text{H}_{19}\text{NO}$: C, 84.88; H, 5.89; N, 4.31. Found: C, 84.76; H, 5.95; N, 4.33. Compound **3c**: a white solid. Mp 150–152°C; ^1H NMR (200 MHz, CDCl_3) δ 7.74 (d, 2H, $J=9.1$ Hz), 7.36–7.54 (m, 6H), 7.22 (td, 1H, $J=7.4, 1.0$ Hz), 7.04 (td, 1H, $J=7.3, 1.0$ Hz), 6.88 (d, 2H, $J=9.1$ Hz), 6.17 (d, 1H, $J=7.9$ Hz), 4.23 (s, 3H), 3.83 (s, 3H). Anal. calcd for $\text{C}_{23}\text{H}_{19}\text{NO}_2$: C, 80.92; H, 5.61; N, 4.10. Found: C, 80.88; H, 5.62; N, 4.06. Compound **3d**: a white solid. Mp 147–149°C; ^1H NMR (400 MHz, CDCl_3) δ 7.49 (d, 1H, $J=7.5$ Hz), 7.24–7.46 (m, 8H), 7.10 (td, 1H, $J=7.3, 1.1$ Hz), 6.98 (td, 1H, $J=7.5, 1.1$ Hz), 6.89 (dd, 1H, $J=8.2, 0.9$ Hz), 6.71 (d, 1H, $J=7.9$ Hz), 4.05 (s, 3H), 3.61 (s, 3H). Anal. calcd for $\text{C}_{23}\text{H}_{19}\text{NO}_2$: C, 80.92; H, 5.61; N, 4.10. Found: C, 80.94; H, 5.63; N, 4.12. Compound **3e**: an oil. ^1H NMR (200 MHz, CDCl_3) δ 7.42–7.51 (m, 4H), 7.30–7.35 (m, 2H), 7.20 (td, 1H, $J=7.4, 1.2$ Hz), 7.03 (td, 1H, $J=7.6, 1.2$ Hz), 6.38 (dd, 1H, $J=7.8, 1.0$ Hz), 4.22 (s, 3H), 3.10 (t, 2H, $J=7.4$ Hz), 1.30–1.50 (m, 4H), 0.93 (t, 3H, $J=7.0$ Hz); EI(MS) m/z (rel. intensity) 291 (M^+ , 49), 276 (99), 249 (70), 234 (100). Compound **2a**: an oil. ^1H NMR (400 MHz, CDCl_3) δ 7.90 (d, 1H, $J=7.9$ Hz), 7.63 (dd, 2H, $J=7.1, 1.2$ Hz), 7.58 (dt, 1H, $J=7.5, 1.0$ Hz), 7.48 (td, 1H, $J=7.3, 1.2$ Hz), 7.36–7.41 (m, 3H), 7.31 (dd, 1H, $J=7.3, 1.2$ Hz), 4.05 (s, 3H), 3.11 (t, 2H, $J=8.0$ Hz), 1.44–1.65 (m, 4H), 0.93 (t, 3H, $J=7.3$ Hz); EI(MS) m/z (rel. intensity) 291 (M^+ , 46), 249 (70), 133 (100). Compound **3f**: an oil. ^1H NMR (200 MHz, CDCl_3) δ 7.48 (dd, 1H, $J=7.3, 1.1$ Hz), 7.17–7.29 (m, 5H), 7.05 (td, 1H, $J=7.3, 1.1$ Hz), 6.47 (dd, 1H, $J=7.7, 1.0$ Hz), 4.21 (s, 3H), 3.09 (t, 2H, $J=7.4$ Hz), 2.46 (s, 3H), 1.36–1.49 (m, 4H), 0.93 (t, 3H, $J=7.0$ Hz); EI(MS) m/z (rel. intensity) 305 (M^+ , 67), 290 (100), 248 (68). Compound **2b**: an oil. ^1H NMR (200 MHz, CDCl_3) δ 7.91 (d, 1H, $J=8.0$ Hz), 7.58–7.60 (m, 3H), 7.49 (td, 1H, $J=7.6, 1.1$ Hz), 7.38 (td, 1H, $J=7.5, 1.0$ Hz), 7.22 (d, 2H, $J=7.8$ Hz), 4.08 (s, 3H), 1.63–1.65 (m, 2H), 1.48–1.52 (m, 2H), 0.96 (t, 3H, $J=7.3$ Hz); EI(MS) m/z (rel. intensity) 305 (M^+ , 76), 290 (100), 248 (66). Compound **3g**: an oil. ^1H NMR (200 MHz, CDCl_3) δ 7.49 (d, 1H, $J=7.4$ Hz), 7.17–7.27 (m, 3H), 7.06 (td, 1H, $J=7.7, 1.2$ Hz), 6.98 (d, 2H, $J=8.8$ Hz), 6.50 (dd, 1H, $J=7.8, 0.8$ Hz), 4.20 (s, 2H), 3.89 (s, 3H), 3.08 (t, 2H, $J=7.3$ Hz), 1.30–1.50 (m, 4H), 0.92 (t, 3H, $J=7.0$ Hz); EI(MS) m/z (rel. intensity) 321 (M^+ , 81), 306 (100), 264 (49). Compound **2c**: an oil. ^1H NMR (200 MHz, CDCl_3) δ 7.89 (d, 1H, $J=7.7$ Hz), 7.66 (d, 2H, $J=9.0$ Hz), 7.36–7.56 (m, 3H), 6.93 (d, 2H, $J=9.0$ Hz), 4.08 (s, 3H), 3.86 (s, 3H), 3.11 (t, 2H, $J=7.5$ Hz), 1.35–1.70 (m, 4H), 0.94 (t, 2H, $J=7.2$ Hz). Compound **3h**: an oil. ^1H NMR (400 MHz, CDCl_3) δ 8.22 (m, 2H), 7.77 (dt, 1H, $J=7.7, 1.0$ Hz), 7.57 (dt, 1H, $J=7.5, 1.0$ Hz), 7.26–7.50 (m, 6H), 6.91 (s, 1H), 4.28 (s, 3H); EI(MS) m/z (rel. intensity) 235 (M^+ , 54), 220 (100), 165 (22).
- Delcey, M. C.; Huel, C.; Bisagni, E. *Heterocycles* **1995**, *41*, 1721.